define cyclone - Search
Open links in new tab
  1. Cyclone - Wikipedia

    In meteorology, a cyclone is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anticyclone). Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclonesof the large…

    In meteorology, a cyclone is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anticyclone). Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale (the synoptic scale). Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes, and dust devils lie within the smaller mesoscale.

    Upper level cyclones can exist without the presence of a surface low, and can pinch off from the base of the tropical upper tropospheric trough during the summer months in the Northern Hemisphere. Cyclones have also been seen on extraterrestrial planets, such as Mars, Jupiter, and Neptune. Cyclogenesis is the process of cyclone formation and intensification. Extratropical cyclones begin as waves in large regions of enhanced mid-latitude temperature contrasts called

    Read more on Wikipedia

    Wikipedia

    Henry Piddington published 40 papers dealing with tropical storms from Calcutta between 1836 and 1855 in The Journal of the Asiatic Society. He also coined the term cyclone, meaning the coil of a snake. In 1842, he published his landmark thesis, Laws of the Storms.

    Continue reading

    There are a number of structural characteristics common to all cyclones. A cyclone is a low-pressure area. A cyclone's center (often known in a mature tropical cyclone as the eye), is the area of lowest atmospheric pressure in the region. Near the center, the pressure gradient force (from the pressure in the center of the cyclone compared to the pressure outside the cyclone) and the force from the Coriolis effect must be in an approximate balance, or the cyclone would collapse on itself as a result of the difference in pressure.

    Because of the Coriolis effect, the wind flow around a large cyclone is counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. In the Northern Hemisphere, the fastest winds relative to the surface of the Earth therefore occur on the eastern side of a northward-moving cyclone and on the northern side of a westward-moving one; the opposite occurs in the Southern Hemisphere. In contrast to low-pressure systems, the wind flow around high-pressure systems are clockwise (anticyclonic) in the northern hemisphere, and counterclockwise in the southern hemisphere.

    Continue reading

    Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere. Cyclogenesis is an umbrella term for several different processes that all result in the development of some sort of cyclone. It can occur at various scales, from the microscale to the synoptic scale.

    Extratropical cyclones begin as waves along weather fronts before occluding later in their life cycle as cold-core systems. However, some intense extratropical cyclones can become warm-core systems when a warm seclusion occurs.

    Tropical cyclones form as a result of significant convective activity, and are warm core. Mesocyclones form as warm core cyclones over land, and can lead to tornado formation. Waterspouts can also form from mesocyclones, but more often develop from environments of high instability and low vertical wind shear. Cyclolysis is the opposite of cyclogenesis, and is the high-pressure system equivalent, which deals with the formation of high-pressure areasAnticyclogenesis.

    A surface low can form in a variety of ways. Topography can create a surface low. Mesoscale convective systems can spawn surface lows that are initially warm-core. The disturbance can grow into a wave-like formation along the front and the low is positioned at the crest. Around the low, the flow becomes cyclonic. This rotational flow moves polar air towards the equator on the west side of the low, while warm air move towards the pole on the east side. A cold front appears on the west side, while a warm front forms on the east side. Usually, the cold front moves at a quicker pace than the warm front and "catches up" with it due to the slow erosion of higher density air mass out ahead of the cyclone. In addition, the higher density air mass sweeping in behind the cyclone strengthens the higher pressure, denser cold air mass. The cold front over takes the warm front, and reduces the length of the warm front. At this point an occluded front forms where the warm air mass is pushed upwards into a trough of warm air aloft, which is also known as a trowal.

    Tropical cyclogenesis is the development and strengthening of a tropical cyclone. The mechanisms by which tropical cyclogenesis occurs are distinctly different from those that produce mid-latitude cyclones. Tropical cyclogenesis, the development of a warm-core cyclone, begins with significant convection in a favorable atmospheric environment. There are six main requirements for tropical cyclogenesis:
    199 sufficiently warm sea surface temperatures,
    299 atmospheric instability,
    399 high humidity in the lower to middle levels of the troposphere

    Read more on Wikipedia

    Continue reading

    The following types of cyclones are identifiable in synoptic charts.
    There are three main types of surface-based cyclones: Extratropical cyclones, Subtropical cyclones and Tropical cyclones
    An extratropical cyclone is a synoptic scale low-pressure weather system that does not have tropical characteristics, as it is connected with fronts and horizontal gradients (rather than vertical) in temperature and dew point otherwise known as "baroclinic zones".

    "Extratropical" is applied to cyclones outside the tropics, in the middle latitudes. These systems may also be described as "mid-latitude cyclones" due to their area of formation, or "post-tropical cyclones" when a tropical cyclone has moved (extratropical transition) beyond the tropics. They are often described as "depressions" or "lows" by weather forecasters and the general public. These are the everyday phenomena that, along with anticyclones, drive weather over much of the Earth.

    Although extratropical cyclones are almost always classified as baroclinic since they form along zones of temperature and dewpoint gradient within the westerlies, they can sometimes become barotropic late in their life cycle when the temperature distribution around the cyclone becomes fairly uniform with radius. An extratropical cyclone can transform into a subtropical storm, and from there into a tropical cyclone, if it dwells over warm waters sufficient to warm its core, and as a result develops central convection. A particularly intense type of extratropical cyclone that strikes during winter is known colloquially as a nor'easter.
    A polar low is a small-scale, short-lived atmospheric low-pressure system (depression) that is found over the ocean areas poleward of the main polar front in both the Northern and Southern Hemispheres. Polar lows were first identified on the meteorological satellite imagery that became available in the 1960s, which revealed many small-scale cloud vortices at high latitudes. The most active polar lows are found over certain ice-free maritime areas in or near the Arctic during the winter, such as the Norwegian Sea, Barents Sea, Labrador Sea and Gulf of Alaska. Polar lows dissipate rapidly when they make landfall. Antarctic systems tend to be weaker than their northern counterparts since the air-sea temperature differences around the continent are generally smaller . However, vigorous polar lows can be found over the Southern Ocean. During winter, when cold-core lows with temperatures in the mid-levels of the troposphere reach −45 °C (−49 °F) move over open waters, deep convection forms, which allows polar low development to become possible. The systems usually have a horizontal leng…

    Read more on Wikipedia

    Continue reading
    Feedback
    Kizdar net | Kizdar net | Кыздар Нет
  1. Some results have been removed