culmen beak anatomy - Search
Open links in new tab
  1. Beak - Wikipedia

    Although beaks vary significantly in size and shape from species to species, their underlying structures have a similar pattern. All beaks are composed of two jaws, generally known as the maxilla (upper) and mandible (lower). The upper, and in some cases the lower, mandibles are strengthened internally by a complex three-dimensional network of bony spicules (or trabeculae) seated in soft connective tissueand surrounded by the hard out…

    Although beaks vary significantly in size and shape from species to species, their underlying structures have a similar pattern. All beaks are composed of two jaws, generally known as the maxilla (upper) and mandible (lower). The upper, and in some cases the lower, mandibles are strengthened internally by a complex three-dimensional network of bony spicules (or trabeculae) seated in soft connective tissue and surrounded by the hard outer layers of the beak. The avian jaw apparatus is made up of two units: one four-bar linkage mechanism and one five-bar linkage mechanism.
    The upper mandible is supported by a three-pronged bone called the intermaxillary. The upper prong of this bone is embedded into the forehead, while the two lower prongs attach to the sides of the skull. At the base of the upper mandible a thin sheet of nasal bones is attached to the skull at the nasofrontal hinge, which gives mobility to the upper mandible, allowing it to move upward and downward.

    The base of the upper mandible, or the roof when seen from the mouth, is the palate; the palate's structure differs greatly in the

    Read more on Wikipedia

    Wikipedia

    The beak, bill, or rostrum is an external anatomical structure found mostly in birds, but also in turtles, non-avian dinosaurs and a few mammals. A beak is used for pecking, grasping, and holding (in probing for food, eating, manipulating and carrying objects, killing prey, or fighting), preening, courtship, and feeding young. The terms beak and rostrum are also used to refer to a similar mouth part in some ornithischians, pterosaurs, cetaceans, dicynodonts, rhynchosaurs, anuran tadpoles, monotremes (i.e. echidnas and platypuses, which have a bill-like structure), sirens, pufferfish, billfishes, and cephalopods.

    Although beaks vary significantly in size, shape, color and texture, they share a similar underlying structure. Two bony projections–the upper and lower mandibles–are covered with a thin keratinized layer of epidermis known as the rhamphotheca. In most species, two holes called nares lead to the respiratory system.

    Continue reading

    Although the word "beak" was, in the past, generally restricted to the sharpened bills of birds of prey, in modern ornithology, the terms beak and bill are generally considered to be synonymous. The word, which dates from the 13th century, comes from the Middle English bec (via Anglo French), which itself comes from the Latin beccus.

    Continue reading

    Full-term chicks of most bird species have a small sharp, calcified projection on their beak, which they use to chip their way out of their egg. Commonly known as an egg tooth, this white spike is generally near the tip of the upper mandible, though some species have one near the tip of their lower mandible instead, and a few species have one on each mandible. Despite its name, the projection is not an actual tooth, as the similarly-named projections of some reptiles are; instead, it is part of the integumentary system, as are claws and scales. The hatching chick first uses its egg tooth to break the membrane around an air chamber at the wide end of the egg. Then it pecks at the eggshell while turning slowly within the egg, eventually (over a period of hours or days) creating a series of small circular fractures in the shell. Once it has breached the egg's surface, the chick continues to chip at it until it has made a large hole. The weakened egg eventually shatters under the pressure of the bird's movements.

    The egg tooth is so critical to a successful escape from the egg that chicks of most species will perish unhatched if they fail to develop one. However, there are a few species which do not have egg teeth. Megapode chicks have an egg tooth while still in the egg but lose it before hatching, while kiwi chicks never develop one; chicks of both families escape their eggs by kicking their way out. Most chicks lose their egg teeth within a few days of hatching, although petrels keep theirs for nearly three weeks and marbled murrelets have theirs for up to a month. Generally, the egg tooth drops off, though in songbirds it is resorbed.

    Continue reading

    The color of a bird's beak results from concentrations of pigments—primarily melanins and carotenoids—in the epidermal layers, including the rhamphotheca. Eumelanin, which is found in the bare parts of many bird species, is responsible for all shades of gray and black; the denser the deposits of pigment found in the epidermis, the darker the resulting color. Phaeomelanin produces "earth tones" ranging from gold and rufous to various shades of brown. Although it is thought to occur in combination with eumelanin in beaks which are buff, tan, or horn-colored, researchers have yet to isolate phaeomelanin from any beak structure. More than a dozen types of carotenoids are responsible for the coloration of most red, orange, and yellow beaks.

    The hue of the color is determined by the precise mix of red and yellow pigments, while the saturation is determined by the density of the deposited pigments. For example, bright red is created by dense deposits of mostly red pigments, while dull yellow is created by diffuse deposits of mostly yellow pigments. Bright orange is created by dense deposits of both red and yellow pigments, in roughly equal concentrations. Beak coloration helps to make displays using those beaks more obvious. In general, beak color depends on a combination of the bird's hormonal state and diet. Colors are typically brightest as the breeding season approaches, and palest after breeding.

    Birds are capable of seeing colors in the ultraviolet range, and some species are known to have ultraviolet peaks of reflectance (indicating the presence of ultraviolet color) on their beaks. The presence and intensity of these peaks may indicate a bird's fitness, sexual maturity or pair bond status. King and emperor penguins, for example, show spots of ultraviolet reflectance only as adults. These spots are brighter on paired birds than on courting birds. The position of such spots on the beak may be important in allowing birds to identify conspecifics. For instance, the very similarly-plumaged king and emperor penguins have UV-reflective spots in different positions on their beaks.

    Continue reading
    Feedback
    Kizdar net | Kizdar net | Кыздар Нет